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Investigating the Cellular Diversity of 
Breast Tissue with  PIPseq™ Technology 
for Single-Cell RNA Sequencing

WHITE PAPER

PIPseq Benefits:Introduction

Single-cell RNA sequencing (scRNA-seq) has made profound impacts 

in the study of cellular and molecular diversity in complex  

tissues1, 2, 3. Depending on the project objectives, tens of thousands 

of cells may need to be processed to capture the full diversity of cell 

types within these tissues. However, specialized capital investment, 

high reagent costs, lack of accessibility and scalability are key factors 

limiting the wide scale adoption and use of single cell technologies.  

Fluent BioSciences has developed a breakthrough single-cell 

analysis technology that relies on Pre-templated Instant Partitions 

(PIPseq) that can scale easily from hundreds to millions of individual 

partitions in a single sample. This technology offers a low barrier to 

entry without the need for complex instrumentation or expensive 

consumables, and can be easily implemented in any molecular 

biology laboratory.

Breast tissue comprises a diverse mixture of epithelial, lymphatic, 

vascular, and immune cell populations, and the structure and 

composition of breast tissue remodels continuously throughout a 

woman’s lifetime4. Previous scRNA-seq analysis of banked reduction 

mammoplasty tissue has revealed changes in cell type abundances in 

response to physiological events such as childbirth and the menstrual 

cycle5. However, current scRNA-seq platforms make it difficult and 

cost-prohibitive to process a large cohort of asynchronously obtained 

patient samples. In this White Paper, we apply Fluent’s PIPseq T20 

3’ Single Cell RNA Kit v2.1 to process > 80,000 cells obtained from 

banked reduction mammoplasty patient samples.

No complex 

instrumentation or 

consumables required

Quickly capture mRNA 

within minutes at point of 

collection

Flexible and scalable

Highly cost-effective

User-friendly 

bioinformatics portal
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For this project, Fluent sequenced the 8 samples on two P3 100 cycle Illumina NextSeq 2000 cartridges. 

Following sequencing, samples were processed using the Fluent Cloud Platform to generate gene expression 

matrices. The Seurat package in R was used to perform downstream bioinformatic analyses.

Figure 1A: 
Primary breast tissue samples 

were obtained from reduction 

mammoplasty patients followed by 

several stages of mechanical and 

enzymatic digestion and size selection 

of the digested fragments.

Figure 1B: 
Upon receipt of the samples, cells were isolated and input into the PIPseq workflow for processing.

Figure 1:

Methods

Fluent received four cryopreserved breast tissue cell suspensions from a collaborating laboratory.  These samples were 

obtained from fresh reduction mammoplasty surgeries, subjected to mechanical and enzymatic dissociation, and filtered5. 

The sub-40 micron filtrate was frozen in media (RPMI 1640 with 30% FBS and 10% DMSO) and shipped to Fluent for PIPseq 

processing. (Figure 1A). Tissue aliquots were thawed and 30,000 input cells per reaction were processed using the Fluent 

BioSciences PIPseq T20 3’ Single Cell RNA Kit v2.1, with each patient assayed in duplicate for a total of eight samples. 

The PIPseq workflow (Figure 1B) begins with prepared cell suspensions which are mixed with Fluent template particles 

and segregated into Pre-templated Instant Partitions (PIPs) by vortexing. Cells are then lysed on a thermal device and 

mRNA captured onto the PIPs. Subsequently, the first strand of cDNA is generated from the captured mRNA via reverse 

transcription and amplified to create a cDNA library for each individual cell. The single-cell cDNA libraries are then 

processed into sequencing libraries using standard library preparation methods followed by next generation sequencing 

(NGS), with primary data analysis performed with the Fluent Cloud Platform.
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Results & Discussion

Table 1 summarizes the key sequencing metrics obtained after processing through the Fluent Cloud Platform for Data 

Analysis. At an average sequencing depth of ~8,000 reads per input cell, > 10,000 cells per replicate were obtained for 

Patients A, B, and C, and > 6,000 cells per replicate from Patient D. For Patients A, B, and C, > 1,000 median transcripts 

per cell were obtained. In total, > 82,000 cells were captured from the 8 samples. UMAP clustering6, a commonly 

used downstream analysis approach for scRNA-seq data, was performed on all cells obtained from the samples. After 

clustering, major cell types were annotated based on known marker genes based on previous breast tissue6, 7 and 

immune cell8 scRNA-seq datasets (Figure 2A). Analysis of the proportion of these different cell types in the entire dataset 

and by patient showed expected patient to patient variation in cell type proportions (Figure 2B). It was also observed that 

Patient C and D have more similar tissue expression profiles when compared to either Patient A or B.

SAMPLE  
NAME

CAPTURED  
CELLS

SEQUENCING DEPTH  
(READS/CELL)

MEDIAN GENES  
IN CELLS

MEDIAN UMI  
IN CELLS

Patient A, Replicate 1 11116 7,300 692 1357

Patient A, Replicate 2 11049 7,300 678 1330

Patient B, Replicate 1 10644 7,300 640 1252

Patient B, Replicate 2 11027 7,300 678 1347

Patient C, Replicate 1 12560 8,200 778 1531

Patient C, Replicate 2 13215 8,200 798 1595

Patient D, Replicate 1 6173 5,700 224 303

Patient D, Replicate 2 6921 5,700 337 489

Summary of sequencing metrics from processed samples, broken down by patient and replicate.

Table 1:

Gene expression analysis of 82,333 captured cells. (A) UMAP analysis was performed on the cells and major cell types identified by cluster-based annotation.  

(B) Proportions of cell types across the entire dataset and broken down by patient.

Figure 2A: Figure 2B: 

Figure 2:
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Focused analysis on 25,775 cells from Patient C. (A) UMAP analysis was performed on only those cells from Patient C and cell type identified by cluster-based 

annotation. (B) Re-clustering of just the immune cells that were identified in panel A, with cell type proportions shown on the right. (C) Expression of marker genes 

overlaid on the clustering plot, with grey indicating low expression and red indicating high expression.

Figure 3A: 

Figure 3C: 

Figure 3B: 

Figure 3:

The highest diversity of cells was obtained from Patient C which were subsequently isolated for a deeper analysis. In 

particular, when clustering the ~25,000 cells from Patient C alone, several well-defined immune cell clusters are observed 

(Figure 3A). These ~2,600 immune cells were then isolated and re-clustered (Figure 3B). From this secondary clustering, 

eight distinct immune cell clusters were identified and annotated based on known marker genes8. By overlaying the 

expression of selected marker genes onto the UMAP plot, the expected enrichment of cell-type specific gene signatures 

was detected (Figure 3C).

Previous work has shown correlations between the cell abundance and state of the epithelial cells within breast tissue 

to physiological factors5. The batch correction algorithm, Harmony9, was used prior to clustering the > 11,000 observed 

epithelial cells across eight samples. After clustering, the three expected epithelial cell types are observed along with 

some additional subtypes (Figure 4A).
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When focusing on the expression of selected genes across these cells, significant concordance with the expression 

patterns of previously identified marker genes5, 7 across the 3 major epithelial cell types is observed (Figure 4B). Marker 

genes in high concordance with the following epithelial subtypes were also observed; HR+ Luminal Subtype A correlates 

with Marker Gene D, HR+ Luminal Subtype B correlates with Marker C and the HR- Luminal Subtype correlates with 

Marker B. The proportions of these luminal cell subtypes across the four patients (Figure 4C) reveal patient to patient 

variation. Notably, Patient C and D have similar luminal subtype proportions when compared to Patient A or B.

Analysis of 11,220 epithelial cells across the eight sample dataset (A) UMAP clustering was performed on epithelial cells following batch correction using Harmony. 

Major cell types were identified through cluster-based annotation. (B) Proportion of luminal cell subtypes across the four patients (C) Marker gene expression overlaid 

on the UMAP plot, with grey indicating low expression and red indicating high expression. 

Figure 4A: 

Figure 4C: 

Figure 4B: 

Figure 4:
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Conclusion

In this White Paper, Fluent has demonstrated the capability of the PIPseq T20 3’ Single Cell RNA Kit v2.1 to capture tens 

of thousands of cells and to clearly resolve cell populations within a complex tissue in a simple, streamlined workflow. 

In particular, the kit has the ability to provide this resolution at a reasonably shallow sequencing depth if necessary. 

Further, the product revealed novel biology in these samples, highlighted by patient-specific cell states. Overall, 

the Fluent BioSciences technology offers a novel instrument-free, easy-to-use and accessible platform that can be 

implemented in any molecular biology laboratory, and in particular to users interested in performing scRNA-seq analysis 

on asynchronously obtained primary samples.
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